

Apprenticeship Curriculum Standard

Industrial Mechanic Millwright 433A

Construction Millwright 426A

Level 2 Common Core

2005

Table of Contents

Preface			1
Introduction			ייי ר
			∠
Level 2			4
Reportable S	Subject	Summary-Level 2	5
1	Drawi	ngs & Schematics II	6
	1.1	Drawings & Schematics II	7
2	Works	shop Practice II	8
	2.1	Machine Tools II	9
	2.2	Bearings & Seals	10
3	Power	r Transmission	15
	3.1	Power Transmission	16
4	Machi	ne Technology II	20
	4.1	Pumps, Valves & Piping	21
	4.2	Compressors	23
5	Weldi	ng & Fabrication II	25
	5.1	Welding & Fabrication II	26
6	Electr	ical & Electronic Controls II	28
	6.1	Electrical & Electronic Controls II	29
APPENDIX (C: Tool	s and Equipment List	31

<u>Please Note:</u> This Standard has been revised to reflect the visual identity of Skilled Trades Ontario (STO) which replaced the Ontario College of Trades on January 1, 2022. The content of this Standard may refer to the former organization; however, all trade specific information or content remains relevant and accurate based on the original date of publishing.

Please refer to STO's website: <u>skilledtradesontario.ca</u> for the most accurate and up to date information. For information about BOSTA and its regulations, please visit <u>Building</u> <u>Opportunities in the Skilled Trades Act, 2021 (BOSTA)</u>.

Any updates to this publication are available on-line; to download this document in PDF format, please follow the link: <u>Skilled Trades Ontario.ca.</u>

© 2022, Skilled Trades Ontario. All rights reserved. No part of this publication may be reproduced in any form whatsoever without the prior permission from Skilled Trades Ontario.

Maintained with transfer to Skilled Trades Ontario 2005 (V100)

Preface

This curriculum standard for the Industrial Mechanic (Millwright)/Construction Millwright trade program is based upon the on-the-job performance objectives, located in the industry-approved training standard.

This is the second level of 3 levels of training. The Reportable Subjects Summary chart (located on page 5) summarizes the training hours for each reportable subject.

The curriculum identifies the learning that takes place in-school. The in-school program focuses primarily on the theoretical knowledge and the essential skills required to support the performance objectives of the Apprenticeship Training Standards.

Employers/Sponsors are expected to extend the apprentice's knowledge and skills through practical training on a work site. Regular evaluations of the apprentice's knowledge and skills are conducted throughout training to verify that all apprentices have achieved the learning outcomes identified in the curriculum standard.

It is not the intent of the in-school curriculum to perfect on-the-job skills. The practical portion of the in-school program is used to reinforce theoretical knowledge. Skill training is provided on the job.

Please refer to Skilled Trades Ontario website (<u>www.skilledtradesontario.ca</u>) for the most accurate and up-to-date information about Skilled Trades Ontario. For information on *Building Opportunities in the Skilled Trades Act, 2021 (BOSTA)*) and its regulations, please visit <u>Building Opportunities in the Skilled Trades Act, 2021, S.O. 2021, c. 28 - Bill 288 (ontario.ca)</u>

Pre-requisites

In order to advance to Level 2 of the apprenticeship program, an individual must have completed all of the units outlined in Level 1. Similarly, in order to advance to Level 3 of the program, an individual must have completed all of the units outlined in Level 1 and 2.

Hours Disclaimer (if applicable)

It is agreed that Training Delivery Agents (TDAs) may need to make slight adjustments (with cause) according to particular apprentice needs and may deviate from the unit sequencing and the prescribed practical and theoretical hours shown within the standard. However, all TDAs will comply with the hours at the reportable subject level.

Suggested Equipment for Training Delivery Agencies

The listing of tools on page 29 does not list minimum quantities based on the understanding that the delivering TDA is in the best position to determine the need based on its delivery methodology.

Personal and Safety Equipment: Personal protective equipment is at the discretion of the TDA who must conform to Ontario Provincial Health and Safety Regulations.

Introduction

The curriculum has been developed in keeping with the prescribed training standards of Workplace Training Branch, Ministry of Labour, Immigration, Training and Skills Development. The curriculum will allow for easy adaptation to the current reporting structures for the respective program phases and to alternate delivery formats.

For easy reference, a time allocation has been included for each respective unit, along with the Theory/Practical breakdown for the delivery of the performance outcomes.

The continual introduction of innovative techniques and more complex equipment is resulting in increasing demands for tradespeople who are not only skilled in the practical aspects of the trade, but who also have a sound theoretical knowledge of the requirements to inspect, diagnose, repair and service. The curriculum has been developed to provide this theoretical knowledge and to offer some practical applications to complement the on-the-job work experiences of the Industrial Mechanic Millwright and Construction Millwright apprentice.

The outcomes of the curriculum, therefore, are to provide a basis for:

- a. sound theoretical training to meet the challenges presented by the increasingly more complex designs and testing techniques.
- b. the acquisition of fundamental skills of the trade through exposure to practical applications.
- c. developing in the apprentices high standards of craftsmanship, problem- solving skills and personal pride in their respective trades.
- d. developing desirable work attitudes and a keen sense of responsibility, particularly in regard to public and personal safety.

The curriculum has also been designed to give the instructor every reasonable opportunity for flexibility and innovation without unnecessary deviation from the course requirements (as determined by the Industry Committee and Provincial Advisory Committee, and as prescribed in the regulation for the trades). Since the scope of the prescribed curriculum is quite extensive, the apprentices will be expected to reinforce the acquired knowledge through regular, independent out- of-classroom assignments. In keeping with sound teaching methodologies, the curriculum has been presented in a chronological sequence. However, the actual application of the sequence may differ somewhat between colleges because of scheduling, staffing and utilisation of facilities.

The curriculum includes specific references to the training standards of Workplace Training Branch, Ministry of Labour, Immigration, Training and Skills Development. While the references to various terminal performance outcomes in the Training Standards have been linked to the respective in-school outcomes, employers should not assume complete coverage in all aspects of the outcome. The in- school delivery focuses primarily on the knowledge required to master the respective performance outcomes outlined in the Training Standards. Employers, therefore, are expected to complete the delivery of these respective outcomes by applying the prescribed in-school knowledge to the required practical learning experienced in the work setting.

To ensure that successful students will be able to satisfy the individual outcomes according to the performance criteria, specific times have been allocated in the respective areas to allow for some application enhancement. It is of utmost importance that all application assignments relate to prescribed experiences only. Time constraints will not permit engaging students in irrelevant tasks of limited learning benefits that are unrelated to the curriculum outcomes.

Regular evaluations of the apprentices' learning achievements must be performed in both theory and application throughout the program to assure consistency in learning outcome expectations.

Implementation Date: September 2004

Industrial Mechanic Millwright / Construction Millwright

Level 2

Number	Reportable Subjects	Hours Total	Hours Theory	Hours Practical
1	Drawings & Schematics II	32	32	0
2	Workshop Practice II	52	28	24
3	Power Transmission	56	40	16
4	Machine Technology II	40	32	8
5	Welding & Fabrication II	44	14	30
6	Electrical & Electronic Controls II	16	12	4
	Total	240	158	82

Reportable Subject Summary-Level 2

This level is common core between the following trades/ occupations: Industrial Mechanic Millwright 433A Construction Millwright 426A

Number:	1		
Title:	Drawings & Schematics	II	
Duration:	Total Hours: 32	Theory: 32	Practical: 0
Prerequisites:	Successful completion of I	_evel I	
Co-requisites:	None		

1.1 Drawings and Schematics II

32 Total Hours Theory: 32 Hours Practical: 0 Hours

Number:	1.1		
Title:	Drawings & Schematics I	I	
Duration:	Total Hours: 32	Theory: 32	Practical: 0
Cross Reference	e to Training Standards:		
CM 1304			
IMM 4602			

To develop the apprentice's ability to effectively use manufacturers' manuals, and to sketch and draw machine component parts, including sectional views.

Learning Outcomes and Content

Upon successful completion, the apprentice is able to:

- 1.1.1 Read and extract necessary information from manufacturers' manuals to enable trainee to order replacement parts.
- 1.1.2 Apply information extracted from technical and manufacturers' manuals to build, rebuild, install and maintain equipment to specifications.
- 1.1.3 Read and interpret mechanical engineering drawings.

Instructional/Delivery Strategies:

- Assignments related to theory and appropriate application skills.
- Minimum of one mid-term test during the eight-week term.
- Final exam at end of term.
- Periodic quizzes.

Evaluation Structure				
Theory Testing Practical Final Assessme				
100%	0%	100%		

Number:	2		
Title:	Workshop Practice II		
Duration:	Total Hours: 52	Theory: 28	Practical: 24
Prerequisites:	Successful completion	of Level I	
Co-requisites:	None		
) 1 Machine To			

2.1 Machine Tools II

	24 Total Hours	Theory: 4 Hours	Practical: 20 Hours
2.2	Bearing & Seals		
	28 Total Hours	Theory: 24 Hours	Practical: 4 Hours

Number:	2.1		
Title:	Machine Tools II		
Duration:	Total Hours: 24	Theory: 4	Practical: 20
Cross Referenc	e to Training Standards:		
CM 1306			
IMM 4605			

To develop the apprentice's knowledge of the function, component parts, holding devices, accessories, cutting tools, and machining operations on the milling machine/surface grinder.

Learning Outcomes and Content

- 2.1.1 List and describe safety rules and procedures pertaining to milling/surface grinding operations.
- 2.1.2 Describe the machining functions normally performed on a mill/surface grinder.
- 2.1.3 Identify the component parts, holding devices, and accessories of the mill/grinder and describe the function of each.
- 2.1.4 Identify the appropriate cutting tools for specific cutting requirements.
- 2.1.5 Identify and select the appropriate grinding wheels for specific grinding operations.
- 2.1.6 Set up and safely operate a milling machine using High Speed Steel and Carbide cutting tools to perform the following machining operations within a unit of tolerance:
 - face
 - slot
 - gear cutting
 - cut keyways
- 2.1.7 Set up and safely operate surface grinders.

Number:	2.2		
Title:	Bearings & Seals		
Duration:	Total Hours: 28	Theory: 24	Practical: 4
Cross Referenc	e to Training Standards:		
CM 1317			
IMM 4608			

To develop the apprentice's knowledge to select, install, and maintain friction/plain and anti-friction bearings, and static and dynamic seals. To be able to interpret ISO charts and bearing catalogues.

Learning Outcomes and Content

- 2.2.1 Identify and describe the make-up of each type of liner material, and describe the reasons for using the following bearing materials:
 - bronze
 - cast iron
 - ryertex
 - teflon
 - Babbitt
 - aluminum
 - plastics and phenolaminates
 - wood (birch-ligna vitae)
- 2.2.2 Identify and describe the function of the following lubrication types and elements:
 - oil grooves
 - gravity feed
 - jacking oil
 - chamfers
 - hydraulic shock/cushion
 - pressure feed
 - set up and maintain oil wedge

- 2.2.3 Describe the fitting and adjusting of friction bearings with respect to the following:
 - fits and tolerances
 - fits and tolerances with respect to speeds and loads
 - line reaming
 - area of contact
 - care and use of Prussian blue
 - scraping tools, groove cutting
 - lubrication entrance
 - boring
- 2.2.4 List and describe the purpose of various alloying elements in Babbitt:
 - low pressure Babbitt
 - extreme pressure Babbitt
- 2.2.5 List and describe with respect to Babbitt bearings:
 - safety precautions
 - pouring procedures
 - cleaning and preparation
 - various types of Babbitt bearing housings
- 2.2.6 Demonstrate the installation, fitting and alignment of friction/plain bearings.
- 2.2.7 Identify and list causes of friction bearing failures and list remedial action.
- 2.2.8 Identify type and describe the function and application of the following antifriction bearings:
 - ball
 - roller
 - needle
- 2.2.9 Identify and describe load conditions:
 - radial
 - thrust (axial)
 - combination radial and axial

- 2.2.10 Identify anti-friction bearing codes and their meanings according to manufacturers' catalogues with regard to:
 - bore diameters
 - suffix designations
 - rolling elements
 - service weight
 - use of sealed and shielded bearings
 - prefix designations
 - mounting procedures
- 2.2.11 Identify component construction of anti-friction bearings with respect to the following:
 - inner and outer races
 - rolling elements
 - cage or separators
 - filling slots
 - angular contact
 - deep groove
 - self aligning
 - separable/non-separable
 - split bearings
- 2.2.12 Identify and describe the function and application of the following bearing housings:
 - pillow block
 - flange
 - extended inner ring and collar
 - eccentric locking collars
- 2.2.13 Describe the following procedures with respect to anti-friction bearings:
 - mounting bearings with interference fits
 - mounting bearings with taper bore
 - tandem mounting bearings with regard to;
 - back to back
 - face to face
 - face to back
 - mounting bearings with withdrawal sleeves
 - hydraulic mounting/demounting bearings
 - Iubrication procedures
 - held and free bearings
 - cleaning, inspecting and storing bearings

- describe and demonstrate installation and removal of bearings using presses, jacks and pullers of various types
- demonstrate various methods of heating bearings
- bearing failure using vibration analysis

2.2.14 Identify and describe type and function of the following static seals:

- gaskets
- gasket forming compounds
- copper and other metals
- "O" rings
- 2.2.15 Describe and demonstrate installation and removal procedures for static seals:
 - make gaskets
 - install gaskets and seals using torque wrench
- 2.2.16 Use manufacturers' catalogues to select materials and styles for static seals with regard to:
 - compatibility with medium being sealed
 - stability over required temperature range
- 2.2.17 Identify and describe types and uses of dynamic seals:
 - lip seals
 - V ring
 - U cup
 - cup seals
 - square ring
 - O ring and backup washer
 - T ring
- 2.2.18 Describe and demonstrate installation and removal procedure for various dynamic and mechanical seals.
- 2.2.19 Use and interpret manufacturers' catalogues in the selection of seal types with regard to the following:
 - compatibility with medium being sealed
 - gap extrusion
 - sealing at high pressure

Instructional/Delivery Strategies:

- Assignments related to theory and appropriate application skills.
- Minimum of one mid-term test during the eight-week term.
- Final exam at end of term.
- Periodic quizzes.

Evaluation Structure				
Theory Testing Practical Final Assessment				
54%	46%	100%		

Number:	3		
Title:	Power Transmission		
Duration:	Total Hours: 56	Theory: 40	Practical: 16
Prerequisites:	Successful completion	of Level I	
Co-requisites:	None		

3.1 Power Transmission

56 Total Hours Theory: 40 Hours Practical: 16 Hours

.1		
ower Transmission		
otal Hours: 56	Theory: 40	Practical: 16
o Training Standards:		
·	.1 ower Transmission otal Hours: 56 o Training Standards:	.1 ower Transmission otal Hours: 56 Theory: 40 o Training Standards:

To develop the apprentice's ability to identify, select and install the appropriate transmission system and/or components for a specific application.

Learning Outcomes and Content

- 3.1.1 Identify, select and apply installation techniques for the following belt drives using common measuring tools, belt and sheave gauges and/or manufacturer's catalogues:
 - conventional V belts and sheaves
 - high capacity V belts and sheaves
 - multiple V belts and sheaves
 - positive drive belts and sheaves
 - variable speed belts and sheaves
 - fractional H.P. belts and sheaves
- 3.1.2 Identify and select the types and sizes of the following chain drives using common measuring tools and/or manufacturers' catalogues:
 - roller and multiple roller chains and sprockets
 - silent chains and sprockets
 - extended pitch roller chains and sprockets
- 3.1.3 Identify and select the types and sizes of the following gears and/or gear reducers:
 - spur
 - cycloidal
 - bevel
 - hypoid
 - harmonic drive

- spiral bevel
- internal spur
- herringbone
- helical
- 3.1.4 Describe the installation and maintenance procedures for the following clutches/brakes:
 - positive contact
 - overrunning
 - magnetic
 - centrifugal
 - friction
- 3.1.5 Identify, select and install the following shaft couplings:
 - rigid
 - universal
 - magnetic
 - flexible
 - friction
 - fluid
- 3.1.6 Calculate V belt and chain lengths using formulae.
- 3.1.7 Calculate speed ratios of different drives.
- 3.1.8 Perform basic alignment procedures using trade formulas.
- 3.1.9 Calculate horsepower requirements for drives.
- 3.1.10 Perform gear calculations.
- 3.1.11 Describe and perform the installation, alignment and tensioning of belt and chain drives.
- 3.1.12 Check belt and chain drives for wear, misalignment and improper tensioning.
- 3.1.13 Describe the procedures for installing clearance and interference fit couplings.

- 3.1.14 Perform preliminary alignment checks for:
 - shaft runout and end play
 - magnetic centred motors
 - coupling rim and face runout
 - soft foot
 - thermal growth
 - piping strain

3.1.15 Align shafts using methods such as:

- feeler and straight-edge
- two dial indicators
- computer-laser
- 3.1.16 Describe lubrication and maintenance functions for couplings.
- 3.1.17 Describe coupling removal procedures.
- 3.1.18 State the purpose of radial and cylindrical cams.
- 3.1.19 Describe the installation, adjustment, lubrication, alignment and maintenance procedures for cams and followers.
- 3.1.20 Describe the procedures for checking for cam wear, speed, follower pressure and backlash.
- 3.1.21 Describe shafting installation and alignment procedures including computer laser alignment.
- 3.1.22 Describe methods for testing the straightness of shafts.
- 3.1.23 Describe the following methods for repairing shafts.
 - filing
 - welding
 - sleeving
 - polishing
 - metalizing
 - turning
- 3.1.24 Explain the purpose of splines.
- 3.1.25 Describe the procedure for the installation and removal of tapered bushings on sheaves and sprockets.

Instructional/Delivery Strategies:

- Assignments related to theory and appropriate application skills.
- Minimum of one mid-term test during the eight-week term.
- Final exam at end of term.
- Periodic quizzes.

Evaluation Structure			
Theory Testing	Practical Application Testing	Final Assessment	
71%	29%	100%	

Number:	4		
Title:	Machine Technology II		
Duration:	Total Hours: 40	Theory: 32	Practical: 8
Prerequisites:	Successful completion of L	evel I	
Co-requisites:	None		

4.1 Pumps, Valves & Piping

	28 Total Hours	Theory: 20 Hours	Practical: 8 Hours
4.2	Compressors		
	12 Total Hours	Theory: 12 Hours	Practical: 0 Hours

Number:	4.1		
Title:	Pumps, Valves & Piping		
Duration:	Total Hours: 28	Theory: 20	Practical: 8
Cross Reference	e to Training Standards:		
CM 1315, 1318			
IMM 4612, 4615	5		

To develop the apprentice's knowledge of the different applications, maintenance and types of pumps, valves, piping and ancillary equipment.

Learning Outcomes and Content

- 4.1.1 Identify and describe the function, application and components of industrial pumps, such as:
 - centrifugal
 - piston
 - screw
 - turbine
 - diaphragm
 - gear
 - jet
 - vane
 - plunger
 - peristaltic
 - axial flow
 - progressive cavity
- 4.1.2 Describe procedures for the installation, overhaul and maintenance of industrial pumps.
- 4.1.3 Inspect, replace or maintain packing and mechanical seals.
- 4.1.4 Care for and use pipe cutters, benders and threaders.
- 4.1.5 Identify and select pipe, tubing and valves for specific applications and to specifications.

- 4.1.6 Select hangers and brackets to specifications.
- 4.1.7 Select specialized fittings, and screwed, welded, cemented and bolted flanges.
- 4.1.8 Select, cut, and fit gaskets.
- 4.1.9 Identify and select expansion joints for specific applications.
- 4.1.10 Identify and select valves for specific applications including:
 - ball valves
 - gate valves
 - globe valves
 - butterfly valves
 - needle valves
 - check valves
 - plug valves
 - diaphragm valves

.2		
compressors		
otal Hours: 12	Theory: 12	Practical: 0
o Training Standards:		
	2 ompressors otal Hours: 12 o Training Standards:	2 ompressors otal Hours: 12 Theory: 12 o Training Standards:

To develop the apprentice's knowledge of the regulations, types, applications and maintenance of compressors and ancillary equipment.

Learning Outcomes and Content

- 4.2.1 Identify and describe types of rotary and reciprocating compressors.
- 4.2.2 Explain the function and application of compressors.
- 4.2.3 Identify component parts of compressors and describe the maintenance procedures for overhaul and repair.
- 4.2.4 Describe the function and maintenance of:
 - primary filters
 - secondary filters
 - intercoolers
 - aftercoolers
- 4.2.5 Describe the function, installation and maintenance of separators and receivers.
- 4.2.6 Describe the functions of check isolating, by-pass and moisture dump valves.
- 4.2.7 Inspect and maintain pressure gauges, by-pass set-ups and pipe systems.

- 4.2.8 Describe the function of unloading devices and their components, including:
 - diaphragms
 - springs
 - valves
 - seals
 - control linkages

Instructional/Delivery Strategies:

- Assignments related to theory and appropriate application skills.
- Minimum of one mid-term test during the eight-week term.
- Final exam at end of term.
- Periodic quizzes.

Evaluation Structure			
Theory Testing Practical Final Assessmen			
80%	20%	100%	

Number:	5		
Title:	Welding & Fabrication II		
Duration:	Total Hours: 44	Theory: 14	Practical: 30
Prerequisites:	Successful completion of L	evel I	
Co-requisites:	None		

5.1 Welding & Fabrication II

44 Total Hours Theory: 14 Hours Practical: 30 Hours

5.1		
Welding & Fabrication II		
Total Hours: 44	Theory: 14	Practical: 30
e to Training Standards:		
	5.1 Welding & Fabrication II Total Hours: 44 e to Training Standards:	5.1 Welding & Fabrication II Total Hours: 44 Theory: 14 e to Training Standards:

To develop the apprentice's knowledge and additional skills in welding and fabrication practices, techniques and pertinent regulations.

Learning Outcomes and Content

- 5.1.1 Describe the types of welded joints and tacking techniques.
- 5.1.2 Describe and apply welding and fabrication techniques including:
 - interpret drawings and understand welding symbols
 - layout, tack and fabricate materials to assemble components using drawings
 - layout procedures and set-up
 - prevention and correction of distortion
 - joint preparation
 - alignment procedures and use of jigs and templates
 - peening, flame shrinkage and proper fabrication techniques
 - selection of correct electrode for specific application
 - oxyacetylene and plasma methods
 - tungsten inert gas (T.I.G.) welding (GTAW)
 - metal inert gas (M.I.G.) welding (GMAW)
- 5.1.3 Demonstrate SMAW welding in vertical and horizontal positions.
- 5.1.4 Describe the use and operation of the guided bend to test weld quality.
- 5.1.5 Calculate geometric formulae and layout as applied to fabrication.

Instructional/Delivery Strategies:

- Assignments related to theory and appropriate application skills.
- Minimum of one mid-term test during the eight-week term.
- Final exam at end of term.
- Periodic quizzes.

Evaluation Structure			
Theory Testing	Practical Application Testing	Final Assessment	
32%	68%	100%	

Number:	6		
Title:	Electrical & Electro	nic Controls II	
Duration:	Total Hours: 16	Theory: 12	Practical: 4
Prerequisites:	Successful completion	on of Level I	
Co-requisites:	None		

6.1 Electrical & Electronic Controls II

16 Total Hours Theory: 12 Hours Practical: 4 Hours

Number:	6.1		
Title:	Electrical & Electronic Co	ontrols II	
Duration:	Total Hours: 16	Theory: 12	Practical: 4
Cross Reference to Training Standards:			
CM 1301, 4613	.03, 1316, 1320, 1321, 1322		
IMM 4600.01, 4	613.03, 4617.08, 4618.10		

To develop the apprentice's basic knowledge concerning electric and electronic theory.

Learning Outcomes and Content

- 6.1.1 Review the use of basic electrical testing instruments. Review and safely demonstrate the trouble shooting, removal, and resetting of electrical and electronic overload devices such as:
 - fuses
 - circuit breakers and ground fault interrupter (GFI)
 - lock-outs and tagouts
 - shut off procedures
- 6.1.2 Introduce open and closed loop control systems.
- 6.1.3 Differentiate between analog and digital signals.
- 6.1.4 Describe, briefly, the electronic devices used in control systems such as:
 - thermal devices: thermostats,thermocouples, bemetallic strip devices, metal resistance thermometers, thermistors, and thermal expansion devices
 - limit switches
 - proximity switches
 - photo cells
 - inductive and capacitive sensors
 - solenoids
 - linear variable differential transformers (LVDT)
 - miscellaneous transducers such as: bourdon tube, pressure switches, diaphragm, bellows, piezoelectric, strain gauges and capsules

- vibration transducers
- displacement, velocity and accelerometer devices

Instructional/Delivery Strategies:

- Assignments related to theory and appropriate application skills.
- Minimum of one mid-term test during the eight-week term.
- Final exam at end of term.
- Periodic quizzes.

Evaluation Structure		
Theory Testing	Practical Application Testing	Final Assessment
75%	25%	100%

APPENDIX C: Tools and Equipment List

The Master Tool List has been developed in conjunction with the Industrial Mechanic Millwright and Construction Millwright Curriculum Advisory Committee and the Industrial Mechanic Millwright Industry Committee and Construction Millwright Provincial Advisory Committee as a requirement for Training Delivery Agents delivering of the program. Actual numbers of tools or equipment required would depend upon method of delivery and number of students in a program.

Level	Description
I	Socket Sets
I	Torque Wrenches
I	Punch Sets
I	Pairs of Pliers
I	Ball Peen Hammers
I	Screwdriver Sets
I	Chisel Sets
I	Pry Bar Sets
I	Scrapers
I	Assorted Files
I	Hacksaws
I	Drill Indexes with Twist Drills
I	Metric Tap & Die Sets
I	Standard Tap & Die Sets
I	Tap Handles
I	Reamer Sets
I	Tin Snips
I	Rivet Guns
I	Grease Guns
I	Funnel
I	Steel Rules
I	Tape Measures
I	Squares
I	Plumb Bobs
I	0 – 1" Micrometers
I	0 – 25mm Micrometers
I	0 – 150mm Metric Depth Micrometers

Level	Description
I	Sets of Standard Depth Micrometers
I	0 – 6" Inside Micrometers
I	0 – 150mm Inside Micrometers
I	1 – 2" Micrometers
I	25 – 50mm Micrometers
I	3" Micrometers
I	12″ Vernier Height Gauges
I	Sine Bars
I	Precision Measurement Rigs
I	Standard 6" Vernier Calipers
I	Metric Vernier Micrometer
I	Master Level
Ι	Telescoping Gauge Sets
Ι	Hole Gauge Sets
I	Radius Gauge Sets
Ι	Standard Gauge Block Set
Ι	Metric Gauge Block Set
I	.001" Dial Indicators
I	.0001" Dial Indicators
I	Standard Thread Gauge Sets
I	Metric Thread Gauge Sets
I	3/8" Power Hand Drills
I	3/8" Angle Drills
I	Magnetic Drills
I	4" Angle Grinders
I	Die Grinders
	Impact Wrenches
	Powder Actuated Gun
<u> </u>	Lock Out & Isolation Simulators
<u> </u>	Safety Harnesses & Fall Arrest Equipment
I	Scott Air Packs*
I	Different Examples of Fire Extinguishers
I	Face Shields
	Arc Welding Shields
I	Safety Locks

Level	Description
I	Safety Glasses (Student Supplied)
I	Hearing Protectors (Student Supplied)
I	First Aid Kits
I	Welders Gloves (Student Supplied)
Ι	Welding Glasses
Ι	Air Tool Compressor (May be a Plant Compressor)
I	Metal Cutting Lathes with Threading Capability
I	Vertical Milling Machines
I	Radial Drill Presses
I	Drill Presses
I	Power Hacksaw
I	Bandsaw
I	Cut Off Saws
I	Hydraulic Press
I	Pedestal Grinders
I	Granite Surface Tables
I	V Blocks
I	Angle Plates
I	Heat Treat Oven*
I	Oil Quench Tank
I	Forge
I	Rockwell or Brinell Hardness Tester*
I	Automatic Lubrication System Trainers*
I	Overhead Crane / Hoist*
I	Pneumatic Hoist
I	Lifting Slings
I	Lifting Chains
I	Assortment of Lifting Hardware
I	Load Skates
I	Hydraulic Jacks
I	Assortment of Blocks
	Chainfalls
I	Portable Hydraulic Lift
	Fork Lift*
I	Arc Welding Units

Level	Description
I	Oxy-acetylene Units
I	Brooms
I	Shovels
I	Lathe Brushes
I	Various Lathe High Speed Cutting & Parting Tools
I	Various Lathe Carbide Cutting Tools
I	Pedestal Grinder Wheels
I	Standard Bolt, Nut & Washer Assortment
I	Metric Bolt, Nut & Washer Assortment
I	Dowel Pin Assortment
I	Circlip Assortment
I	Cotter Pin Assortment
I	Loctite Assortment
I	Rivet Assortment
I	Grease Assortment
I	Oil Assortment
I	Drafting & Sketching Kits
I	Tap Drill Charts
I	Cutting Speed Charts
I	Load Charts
I	Tubing Benders
I	Tubing Cutters
I	Pipe Cutters
I	Bearing Pullers
I	Straightedge
I	Induction Bearing Heater
II	Pipe Bender
II	Power Jacks
II	Pipe Threading Machine
II	Power Shear
II	Horizontal Milling Machine
II	Boring Heads
II	Surface Grinders
	Surface Grinder Magnetic Chunks
	Dividing Head

Level	Description
II	Laser Alignment Units
II	Arbor Press
II	Power Hone
II	Various End Mills
П	Carbide Insert Milling Cutters
П	Surface Grinder Wheels
II	O Ring Assortment
П	Assortment of Pipe Fittings
П	Different Examples of Various Plain, Journal & Sleeve Bearings
II	Different Examples of Bearing Housings & Gearboxes
II	Examples of Various Anti-friction Bearings and Assorted Failures
	Different Examples of Seals
	Different Examples of Packing
II	Example of V Belt Drive
II	Example of Chain Drive
П	Example of Magnetic, Fluid or Centrifugal Coupling
II	Example of Piston Compressor
II	Example of Screw Compressor
II	Example of Wet and Dry Compressor
П	Example of Roots Blower or Lobe Compressor
II	Assortment of Filter Examples
II	Example of Dryer
	Example of Cooler
II	Bearing Installation Set ups
II	Gearbox Training Units with Motors, Couplings, etc.
II	Coupling Alignment Units
II	Compressor Training Units
II	Pneumatic Training Units
II	Dumpy Levels
II	Tilting Levels
II	Transit
II	Auto Level
II	12" Precision Levels
	Block Level
	Theodolite Rings

Level	Description
	Vibration Analyzers
	Dust Collector*
	Programmable Logic Controllers
	Computers with PPM Programs
	Computer Printer
	Assortment of Anchors
	Electrical Multi-testers
	Tachometer*
	Ultrasonic Gun*
	Thermographic Unit*
	Roller Conveyor System Trainer
	Belt Conveyor System Trainer
	Example of Vibrator*
III	Example of Screw, Chain, Monorail or Bucket Conveyor
	Fly Ball Governor
	Example of AC Motor
	Example of DC Stepping Motor
	Example of Internal Combustion Motor*
	Example of Turbine*
	Example of Multi-stage Fan*
	Example of Shaker Bagger*
III	Assortment of Pneumatic Valves
	Assortment of Pneumatic Actuators
	Different Examples of Hydraulic Piston Pumps
	Different Examples of Hydraulic Vane Pumps
	Different Examples of Hydraulic Pumps Other Than Piston or Vane
====	Assortment of Filters and Contamination Control Devices
	Different Examples of Directional Valves
	Different Examples of Proportional Valves
III	Example of Mechanical Hydraulic Servo Proportioning
	Different Examples of Linear Hydraulic Actuators
	Example of Rotary Hydraulic Actuator
	Example of Electrical Servo Proportioning Valves
III	Example of Fiber Optics*
	Hydraulic Training Units

Level	Description
III	Hydraulic Pump Test Units
III	Hydraulic Troubleshooting Unit
III	Ironworker
III	Brake
III	Shears
III	Rollers
III	Various Electrical Sensors
III	Electrical Breakers
III	Electrical Fuses

* These items are considered desirable, but not absolutely necessary.

skilledtradesontario.ca

Industrial Mechanic (Millwright)